

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 4753-4757

Tetrahedron Letters

Samarium dienolate mediated stereoselective synthesis of *anti*-1,3-diol monoesters via aldol-Tishchenko reaction

Vichai Reutrakul,* Jaray Jaratjaroonphong, Patoomratana Tuchinda, Chutima Kuhakarn, Palangpon Kongsaeree, Samran Prabpai and Manat Pohmakotr*

Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Received 9 February 2006; revised 11 April 2006; accepted 19 April 2006 Available online 19 May 2006

Abstract—The reaction of an (*E*)-samarium dienolate, generated by the regioselective reductive cleavage of a phenylsulfonyl activated cyclopropyl ketone with samarium(II) iodide, with aliphatic and aromatic aldehydes gives the 2-substituted *anti*-1,3-diol monoester derivatives, stereoselectively, in good to excellent yields. The results represent the first report of a dienolate in the aldol-Tishchenko reaction and also provide an optically active polyol with (*R*)-glyceraldehyde. © 2006 Elsevier Ltd. All rights reserved.

The Tishchenko reaction is a powerful tool in organic synthesis that allows the highly effective synthesis of many natural products¹ such as polyketides, macrolides, and coalescing agents in the paint industry.² In general, the tandem aldol-Tishchenko reaction is employed to access anti-1,3-diol monoesters from the intermediate metal-enolates (e.g., $M = Li^+$, Zn^{2+} , Al^{3+} , Sm^{2+} , Sm^{3+} , Yb^{3+} , Y^{3+} , Ga^{3+} , La^{3+} , Ti^{4+} , Zr^{4+} , or Hf^{4+}) with 2 mol of aldehyde through intramolecular hydride transfer in the hemiacetal formed from the aldehyde and the β -metaloxy carbonyl compound.^{3,4} Among these metal complexes, samarium(II) iodide is one of the most effective agents for catalyzing both the Tishchenko reduction and the tandem aldol-Tishchenko reaction of β -hydroxy ketones and ketones or aliphatic aldehydes with aldehydes, respectively, to give anti-1,3-diol monoester adducts in high yields and excellent stereoselectivity.^{1,3b,h,5}

Recently, we reported the synthetic applications of samarium(II) iodide-mediated regioselective cleavage of phenylsulfonyl activated cyclopropyl ketone 1 to give the (E)- β , γ -unsaturated ketone 4a in high yield. Samarium dienolate 3 was proposed as the intermediate, which could be electrophilically trapped with alkylating agents. Only α -alkylated products 4b–d were isolated

Keywords: Samarium dienolate; Aldol-Tishchenko reaction.

* Corresponding authors. Tel.: +66 2 2015152; fax: +66 2 6445126; e-mail addresses: scvrt@mahidol.ac.th; scmpk@mahidol.ac.th

0040-4039/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.04.091

(Scheme 1).⁶ To the best of our knowledge, there are only a few reports on the reactions of samarium dienolates with various electrophiles.^{6,7} In this letter, we report the first example of the tandem aldol-Tishchenko reaction of samarium dienolate **3** with various aldehydes to afford 2-substituted *anti*-1,3-diol monoesters in high yields and excellent stereoselectivity.

We first examined and optimized the reaction of samarium dienolate 3 with propanal in THF (Scheme 1 and

Scheme 1. Possible mechanism for the SmI_2 -mediated formation of samarium dienolate 3 from activated cyclopropyl ketone 1 and its reactions with electrophiles.

Table 1). With 10 equiv of propanal and stirring the reaction at -78 °C for 15 min and then at room temperature for an additional 5 h (entry 1), the aldol-Tishchenko adducts **7a** and **8a** were isolated in 44% and 30% yields, respectively. The addition of HMPA as cosolvent (entry 2) caused a reduction of the yields. We then searched extensively for the optimum conditions for the reaction. In Table 1, the conditions giving the highest yield of the aldol-Tishchenko adducts **7a** (68%) and **8a** (17%) are shown in entry 5. A longer reaction time caused equilibration (transesterification of **7a**) of the adducts **7a** and **8a**.^{3a,e}

The generality of the reaction was secured through experiments with different aldehydes as electrophiles (Table 2) under the optimum conditions (Table 1, entry 5).⁸ All the aldehydes studied gave the aldol-Tishchenko adducts in good to excellent yields, except for *p*-bromobenzaldehyde (entry 8) and the less electrophilic anisaldehyde (entry 10), as might be expected. Comparable levels of diastereoselection [**7**:**9** and **8**:**10** (>99:1)] were obtained with all long chain aliphatic, aromatic and β-alkyl substituted aldehydes. However, the α-alkyl substituted aldehyde, isobutyraldehyde (entry 4), appeared to exhibit lower diastereoselectivity under the current reaction conditions, compounds **7** and **9** were isolated in almost equal amounts.

The structures and relative stereochemistries of the anti-1,3-diol monoesters 7-10 were established based on their ¹H NMR spectra. The relative stereochemistry of the unusual aldol-Tishchenko adduct 9d (Table 2, entry 4) was confirmed by X-ray crystallographic analysis as shown in Figure 1. The mechanism of the aldol-Tishchenko reaction has been proposed in both stepwise^{3b,g,h,j,4a,9,10} and concerted^{3c} manners. Based on previous reports and our current studies, a possible mechanistic pathway of the aldol-Tishchenko reaction of the samarium dienolate 3 with an aldehyde is illustrated in Scheme 2. The aldol reaction is reversible, whereas the stereospecific Tishchenko reaction is irreversible.^{3a,g,h,5a} The rate difference of these two reactions is an important factor that determines the stereochemical outcome of the final diol monoester adducts. Previous studies^{3h,m} firmly established that the fast interconversion of anti- and syn-aldolates occurred via a dissociation-recombination pathway. The formation

Table 1. Optimization studies^a

Entry	EtCHO	Temp	Time	Products (% yield) ^b					
	(equiv)	(°C)	(h)	4a	6a	7a	8a	7a+8a	
1	10.0	-78 to rt	5		_	44	30	74	
2^{c}	10.0	-78 to rt	5	5	_	36	11	47	
3	1.5	-78 to rt	1	10		49	7	56	
4	2.0	-78 to rt	1	3		61	12	73	
5	3.0	-78 to rt	1	_	_	68	17	85	
6	3.0	-78 to rt	5			48	29	77	
7	4.0	-78 to rt	1			61	18	79	

 $^{\rm a}$ All reactions were performed using 1.2 equiv of SmI_2 (0.1 M) in THF. $^{\rm b}$ Isolated yield.

^c HMPA (10 equiv) was used as cosolvent.

Table 2. The aldol-Tishchenko reaction of samarium dienolate **3** with various aldehydes⁸

Ph a F	b 1) 1.2 g → SO ₂ Ph p _h 2) 3 eq -78 °	equiv THF uiv R C to	Sml ₂ CHO rt, 1 h	O Ph O Ph		COR F R + COR F `R +	ROCO OH Ph R 8 Ph ROCO OH Ph R 10 Ph
Entry	Aldehyde 5	Products (% yield) ^a				Overall	
	R		7	8	9	10	yields (%)
1	Ethyl	a	68	17	_	_	85
2	n-Butyl	b	63	22	_	_	85
3	n-Heptyl	c	62	27			89
4	<i>i</i> -Propyl	d	33	3	32	10	78
5	<i>i</i> -Butyl	e	55	14	_	_	69
6	Phenyl	f	28	28	_	_	56
7	$4-ClC_6H_4$	g	21	34	_	_	55
8	$4-BrC_6H_4$	h	10	22	_	_	32
9	$4-CH_3C_6H_4$	i	27	26	_	_	53
10	$4-CH_3OC_6H_4$	j	30	6			36

^a Isolated yield.

of products 7 and 8 for all entries except entry 4, Table 2, could be explained by the fast and irreversible reaction of *anti*-aldolate **A** with a second mole of aldehyde via the favorable transition state **C** compared to the less energetically favorable transition state **F** due to the axial position of the styryl group. In these cases, presumably the fast isomerization from *syn*-aldolate **B** to *anti*-aldolate **A** surpasses the rate of Tishchenko reaction. Thus *syn*-aldolate **B** can isomerize to an *anti*-aldolate **A**, which undergoes subsequent Tishchenko reduction via the more favorable transition state **C** to afford the desired product 7 and its transesterification isomer **8** (via a six-membered intermediate **E** and **D**').^{3a,g}

In the case of isobutyraldehyde (Table 2, entry 4), the steric effect caused by the isopropyl group resulted in both a slow down in equilibration of the *anti*-aldolate **A** and *syn*-aldolate **B**, and a lowering of the energy difference between the transition states **C** and **F**.^{3h} These combined effects, presumably, led to the formation of 7, its transesterification isomers 8 and 9 and its transesterification isomer 10 (via a six-membered intermediate **H** and **G**').

The tandem aldol-Tishchenko reaction of the samarium dienolate **3** is also applicable to the stereoselective synthesis of optically pure polyoxygenated organic compounds. The reaction of cyclopropyl ketone **1** with (*R*)-glyceraldehyde acetonide **11** in the presence of SmI₂ in THF (Scheme 3) gave only the transesterified aldol-Tishchenko adducts **13** [5%, $[\alpha]_D^{29}$ –61.82 (*c* 0.11, CHCl₃)] and **15** [38%, $[\alpha]_D^{31}$ +70.00 (*c* 0.10, CHCl₃)]. The results indicated that three stereogenic centers of the corresponding *anti*-diol monoester could be created in a single operation.

Figure 1. ORTEP plot of the X-ray crystal structure of compound 9d.

Scheme 2. Possible mechanism for the tandem aldol-Tishchenko reaction of samarium dienolate 3 with aldehydes.

The relative and absolute stereochemistries of compound 15 were established by spectroscopic techniques

Scheme 3. The aldol-Tishchenko reaction of samarium dienolate 3 with (R)-glyceraldehyde acetonide 11.

and confirmed by X-ray crystallographic analysis of compound 16 derived from 3,5-dinitrobenzoylation of alcohol 15 (Fig. 2). The origin of the 1,3-anti stereoselectivity can be rationalized by two consecutive stereoselective reactions, that is the anti selective aldol condensation of samarium dienolate 3 with the enantiomerically pure aldehyde (R)-11 (via chelated transition state I) followed by the anti stereoselective Tishchenko reduction (via K) to afford transition state L (Scheme 4).¹¹ Intramolecular acyl migration in L decreases the steric effect and dipole-dipole interaction between the two acetonide groups (via M and L'). The absolute configuration at the C-3 and C-4 positions in the transition state L was attributed to the chelation control of the oxophilic Lewis acid, samarium salt to the oxygen atom of the carbonyl group and the oxygen atom in the α position of the acetonide (via I and J). Therefore, the samarium dienolate 3 would attack preferentially at the *re* face of (R)-glyceraldehyde acetonide 11.

Figure 2. ORTEP plot of the X-ray crystal structure of compound 16.

Scheme 4. Possible transition state for the formation of compound 15 through tandem aldol-Tishchenko reaction of samarium dienolate 3 with (R)-glyceraldehyde acetonide 11.

In summary, the stereoselective synthesis of *anti*-1,3-diol monoesters could be smoothly carried out via the reaction of samarium dienolate with various aldehydes via the tandem aldol-Tishchenko reaction. Our results also provide a complementary insight of the reaction mechanism. Moreover, the aldol-Tishchenko process is also applicable to the stereoselective synthesis of optically active *anti*-1,3-diol monoesters in one step. Further investigations into the scope and limitations of this reaction are in progress.

Acknowledgments

We wish to thank the Thailand Research Fund for the award of Senior Research Scholar to V.R., a grant to P.K. (TRF 4780020) and a Ph.D. scholarship to J.J. through the Royal Golden Jubilee Ph.D. program. The financial support from the Postgraduate Education and Research Program in Chemistry (PERCH) are also gratefully acknowledged.

References and notes

- Examples of the Tishchenko reactions in natural product synthesis, see: (a) Romo, D.; Meyer, S. D.; Johnson, D. D.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 7906– 7907; (b) Wild, R.; Schmidt, R. R. Tetrahedron: Asymmetry 1994, 5, 2195–2208; (c) Schöning, K.-U.; Hayashi, R. K.; Powell, D. R.; Kirschning, A. Tetrahedron: Asymmetry 1999, 10, 817–820; (d) Paterson, I.; Davies, R. D. M.; Marquez, R. Angew. Chem., Int. Ed. 2001, 40, 603–607; (e) Shotwell, J. B.; Krygowski, E. S.; Hines, J.; Koh, B.; Huntsman, E. W. D.; Choi, H. W.; Schneekloth, J. S., Jr.; Wood, J. L.; Crews, C. M. Org. Lett. 2002, 4, 3087–3089; (f) Smith, A. B., III; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc. 2003, 125, 350– 351; (g) Jiang, Y.; Hong, J.; Burke, S. D. Org. Lett. 2004, 6, 1445–1448.
- Törmäkangas, O. P.; Koskinen, A. M. P. Org. Process Res. Dev. 2001, 5, 421–425.
- 3. Examples of tandem aldol-Tishchenko reactions, see: (a) Burkhardt, E. R.; Bergman, R. G.; Heathcock, C. H. Organometallics 1990, 9, 30-44; (b) Curran, D. P.; Wolin, R. L. Synlett 1991, 317-318; (c) Baramee, A.; Chaichit, N.; Intawee, P.; Thebtaranonth, C.; Thebtaranonth, Y. J. Chem. Soc., Chem. Commun. 1991, 1016-1017; (d) Horiuchi, Y.; Taniguchi, M.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1995, 36, 5353-5356; (e) Mahrwald, R.; Costisella, G. Synthesis 1996, 1087-1089; (f) Bodnar, P. M.; Shaw, J. T.; Woerpel, K. A. J. Org. Chem. 1997, 62, 5674-5675; (g) Abu-Hasanayn, F.; Streitwieser, A. J. Org. Chem. 1998, 63, 2954-2960; (h) Lu, L.; Chang, H.-Y.; Fang, J.-M. J. Org. Chem. 1999, 64, 843-853; (i) Delas, C.; Blacque, O.; Moïse, C. J. Chem. Soc., Perkin Trans. 1 2000, 2265-2270; (j) Schneider, C.; Hansch, M. Chem. Commun. 2001, 1218-1219; (k) Simpura, I.; Nevalainen, V. Tetrahedron Lett. 2001, 42, 3905-3907; (1) Simpura, I.; Nevalainen, V. Tetrahedron 2003, 59, 7535-7546; (m) Schneider, C.; Klapa, K.; Hansch, M. Synlett 2005, 91-94; (n) Hon, Y.-S.; Chang, C.-P. Tetrahedron 2005, 61, 5267-5275.
- Examples of catalytic asymmetric aldol-Tishchenko reactions, see: (a) Mascarenhas, C. M.; Miller, S. P.; White, P. S.; Morken, J. P. Angew. Chem., Int. Ed. 2001, 40, 601–603; (b) Mlynarski, J.; Mitura, M. Tetrahedron Lett. 2004, 45, 7549–7552; (c) Gnanadesikan, V.; Horiuchi, Y.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7782–7783; (d) Mlynarski, J.; Jankowska, J.; Rakiel, B. Chem. Commun. 2005, 4854–4856; (e) Rohr, K.; Herre, R.; Mahrwald, R. Org. Lett. 2005, 7, 4499–4501.
- Examples of Tishchenko reactions using SmI₂, see: (a) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. **1990**, 112, 6447–6449; (b) Uenishi, J.; Masuda, S.; Wakabayashi, S. Tetrahedron Lett. **1991**, 38, 5097–5100; (c) Molander, G. A.; McKie, J. A. J. Am. Chem. Soc. **1993**, 115, 5821–5822; (d) Hsu, J.-L.; Fang, J.-M. J. Org. Chem. **2001**, 66, 8573–8584; (e) Fan, C.-A.; Wang, B.-M.; Tu, Y.-Q.; Song, Z.-L. Angew. Chem., Int. Ed. **2001**, 40, 3877–

3880; (f) Miyano, A.; Tashiro, D.; Kawasaki, Y.; Sakaguchi, S.; Ishii, Y. *Tetrahedron Lett.* **1998**, *39*, 6901–6902.

- 6. (a) Reutrakul, V.; Saeeng, R.; Pohmakotr, M.; Kongsaeree, P. *Tetrahedron Lett.* 1999, 40, 1019–1020; For a recent review on the use of SmI₂ in organic synthesis, see: (b) Kagan, H. B. *Tetrahedron* 2003, 59, 10351–10372; For examples of enolate formation from cyclopropyl ketones, see: (c) Enholm, E. J.; Jia, Z. J. J. Org. Chem. 1997, 62, 9159–9164; (d) Molander, G. A.; Harris, C. R. *Tetrahedron* 1998, 54, 3321–3354; (e) Avilov, D. V.; Malusare, M. G.; Arslancan, E.; Dittmer, D. C. Org. Lett. 2004, 6, 2225–2228.
- For examples of the generation and reaction of samarium dienolates, see: (a) Yang, S.-M.; Fang, J.-M. *Tetrahedron Lett.* **1997**, *38*, 1589–1592; (b) Otaka, A.; Yukimasa, A.; Watanabe, J.; Sasaki, Y.; Oishi, S.; Tamamura, H.; Fujii, N. *Chem. Commun.* **2003**, 1834–1835.
- Typical procedure for the tandem aldol-Tishchenko reaction (Table 2): Under an atmosphere of argon at -20 °C (MeOH-ice), a solution of phenylsulfonyl activated cyclopropyl ketone 1 (362 mg, 1 mmol) in THF (5 mL) was

added to a deep blue SmI₂ (1.2 mmol) solution freshly prepared from samarium (60 mesh, 300 mg, 2 mmol) and diiodomethane (0.1 mL, 1.2 mmol) in THF (10 mL). The reaction mixture was stirred at -20 °C for 15 min and then was allowed to warm to rt for an additional 15 min. The reaction mixture was cooled to -78 °C before a solution of freshly distilled aldehyde (3 mmol) in THF (1 mL) was added. Stirring was continued at -78 °C for 15 min, then at rt for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ (25 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layer was washed with water (3 × 50 mL), saturated NaCl (50 mL), dried over anhydrous MgSO₄, and evaporated to give an oil or a solid as a crude product.

- 9. Loog, O.; Mäeorg, U. Tetrahedron: Asymmetry 1999, 10, 2411–2415.
- 10. Umekawa, Y.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1997, 62, 3409–3412.
- 11. Jurczak, J.; Pikul, S.; Bauer, T. *Tetrahedron* **1986**, *42*, 447–488.